

Committente: **Pomini Techint S.p.A.** Via Leonadro da Vinci, 20 21053 Castellanza (VA) Italy

RELAZIONE DI CALCOLO

BASAMENTO MISCELATORE CONTINUO

PCM-U 300

Α	03-05-2005	Prima emissione	Eugenio Cortiana	-	-
rev.	data	emissione	redatto	verificato	approvato

Indice

	Simbologia	pag.	4
1)	Descrizione	pag.	6
2)	Dati e Unità di misura	pag.	6
3)	Materiali	pag.	7
4)	Carichi agenti	pag.	7
5)	Vincoli e sistema di riferimento	pag.	11
6)	Strumenti di modellazione e calcolo	pag.	12
7)	Analisi svolte	pag.	12
8)	Condizioni di carico	pag.	15
9)	Risultati ottenuti	pag.	19

ELENCO TABELLE

Tab. 001	Tab. riassuntiva diag. Carichi dinamici su cuscinetti	pag.	16
Tab. 002	Tab. stress e def. max. analisi dinamica su basamento in uso	pag.	19
Tab. 003	Tab. stress e def. max. analisi statica+T su basamento in uso	pag.	21
Tab. 004	Tab. stress e def. max. analisi statica equivalente allo step n°2		
	dell'analisi dinamica su basamento in uso	pag.	24
Tab. 005	Tab. stress e def. max. analisi statica equivalente allo step n°2		
	dell'analisi dinamica e carichi termici su basamento in uso	pag.	27
Tab. 006	Tab. stress e def. max. analisi dinamica su basamento nuovo	pag.	30
Tab. 007	Tab. stress e def. max. analisi statica+T su basamento nuovo	pag.	32
Tab. 008	Tab. stress e def. max. analisi statica equivalente allo step n°2		
	dell'analisi dinamica su basamento nuovo	pag.	35
Tab. 009	Tab. stress e def. max. analisi statica equivalente allo step n°2		
	dell'analisi dinamica e carichi termici su basamento nuovo	pag.	38
Tab. 010	Valori di stress su saldature da comb. carico statico e termico	pag.	43
Tab. 011	Valori di stress su saldature da carico termico	pag.	43
Tab. 012	Valori di stress su saldature da carico statico	pag.	43

ELENCO FIGURE

Fig.001	Schema di base	pag.	8
Fig.002	Dettaglio Camera di miscelazione e rotori	pag.	11
Fig.003	Dettaglio sistema di riferimento globale	pag.	12
Fig.004	Dettaglio Piedino esistente	pag.	15
Fig.005	Dettaglio nuova configurazione piedino	pag.	15
Fig.006	Disposizione Cuscinetti su spalla lato acqua	pag.	16
Fig.007	Mappa distribuzione di temperatura	pag.	18
Fig.008	Mappa distribuzione di temperatura	pag.	19
Fig.009	Mesh	pag.	20
Fig.010	Dettaglio mesh zona saldature	pag.	20
Fig.011	Dettaglio vincoli applicati	pag.	21
Fig.012	Dettaglio distribuzione stress allo step n°2	pag.	21
Fig.013	Dettaglio distribuzione stress da carico termico	pag.	22
Fig.014	Dettaglio distribuzione stress da carico termico	pag.	23
Fig.015	Dettaglio distribuzione stress da carico termico		
	su saldature	pag.	24
Fig.016	Dettaglio distribuzione stress da carico statico		
	equivalente allo step n°2 dell'analisi dinamica	pag.	25
Fig.017	Dettaglio distribuzione stress da carico statico		
	equivalente allo step n°2 dell'analisi dinamica	pag.	26
Fig.018	Dettaglio distribuzione stress su saldature da carico		
	statico equivalente allo step n°2 dell'analisi dinamica	pag.	27
Fig.019	Dettaglio distribuzione stress da combinazione carico		
	statico equivalente allo step n°2 dell'analisi dinamica		
	e carico termico	pag.	28
Fig.020	Dettaglio distribuzione stress da combinazione carico		
	statico equivalente allo step n°2 dell'analisi dinamica		
	e carico termico	pag.	29
Fig.021	Dettaglio distribuzione stress su saldature da comb.		
	di carico statico equiv. e carico termico	pag.	30
Fig.022	Mesh	pag.	31
Fig.023	Dettaglio mesh zona saldature	pag.	31
Fig.024	Dettaglio vincoli applicati	pag.	32

Fig.025	Dettaglio distribuzione stress allo step n°2	pag.	32
Fig.026	Dettaglio distribuzione stress da carico termico	pag.	33
Fig.027	Dettaglio distribuzione stress da carico termico	pag.	34
Fig.028	Dettaglio distribuzione stress da carico termico		
	su saldature	pag.	35
Fig.029	Dettaglio distribuzione stress da carico statico		
	equivalente allo step n°2 dell'analisi dinamica	pag.	36
Fig.030	Dettaglio distribuzione stress da carico statico		
	equivalente allo step n°2 dell'analisi dinamica	pag.	37
Fig.031	Dettaglio distribuzione stress su saldature da carico		
	statico equivalente allo step n°2 dell'analisi dinamica	pag.	38
Fig.032	Dettaglio distribuzione stress da combinazione carico		
	statico equivalente allo step n°2 dell'analisi dinamica		
	e carico termico	pag.	39
Fig.033	Dettaglio distribuzione stress da combinazione carico		
	statico equivalente allo step n°2 dell'analisi dinamica		
	e carico termico	pag.	40
Fig.034	Dettaglio distribuzione stress su saldature da comb.		
	di carico statico equiv. e carico termico	pag.	41
Fig.035	Dettaglio superfici di riferimento su saldature su		
	basamento nuovo	pag.	43
Fig.036	Dettaglio superfici di riferimento su saldature su		
	basamento esistente	pag.	43
Fig.037	Diag. Polare reazioni vincolari cuscinetto A Rot. Dx	pag.	45
Fig.038	Diag. Polare reazioni vincolari cuscinetto B Rot. Dx	pag.	46

ALLEGATI

Allegato A:	Modello di calcolo e simulazione per il calcolo delle forze e delle			
	reazioni vincolari.	Pag . 1÷18		
Allegato B:	Valori di stress su saldature dovute alla combinazione			
	dei carichi statici e termici.	Pag . 1÷35		
Allegato C:	Valori di stress su saldature dovuti a carico termico.	Pag . 1÷16		
Allegato D:	Valori di stress su saldature dovuti a carico statico	Pag . 1÷18		
Allegato E:	Disegno di Assieme, Rotore Dx, Rotore Sx e Spalle			

Simbologia

β_{ei}	Angolo che definisce il baricentro della superficie del rotore, dove, per ipotesi,
	avviene lo scambio di forze tra il rotore e la mescola,
μ_a	Coefficiente di attrito ipotetico tra la superficie del Rotore e la mescola,
α_a	Angolo di attrito ipotetico tra la superficie del Rotore e la mescola,
α	Angolo di rotazione dei rotori rispetto all'asse (X) nel sistema di riferimento globale della macchina,
$lpha_{ m ei}$	Angolo di rotazione elica esima dei rotori, rispetto all'asse (X) nel sistema di
а	riferimento globale della macchina, Vedi Fig.01.
Ь	Vedi Fig.01,
R_1	Vedi Fig.01,
R_3	Vedi Fig.01,
β_1	Vedi Fig.01,
9	Vedi Fig.01,
\mathcal{G}_1	Vedi Fig.01,
R_2	Vedi Fig.01,
β_2	Vedi Fig.01,
b _{ta(ei)}	Braccio di leva della risultante \mathcal{F}_{ta} ,
b _{tn(ei)}	Braccio di leva della forza normale alla superficie $\mathcal{F}_{\scriptscriptstyle tn}$,
p_m	Potenza motore,
n _m	Numero di giri motore e albero veloce riduttore,
$ au_r$	Rapporto di trasmissione riduttore,
η_r	Rendimento riduttore,
$\eta_{ m rot}$	Rendimento elica di miscelazione rispetto al lavoro globale del rotore,
n _{ar}	Numero di giri alberi lenti riduttore,
$\omega_{\rm ar}$	Velocità angolare alberi lenti riduttore,
M _{tar}	Quota di momento torcente disponibile su ogni elica,
F _{ta}	Forza di azione risultante, nel sistema di coordinate locali del rotore,
F _{tam(ei)}	Forza di azione media risultante elica iesima, nel sistema di coordinate locali,
F _{tax(ei)}	Componente in direzione x della Forza $F_{tam(ei)}$, nel sistema di coordinate locali,
F _{taz(ei)}	Componente in direzione z della Forza $F_{tam(ei)}$, nel sistema di coordinate locali,
$F_{ta\alpha(ei)}$	Forza di azione risultante elica iesima, modificata secondo il coefficiente $ ho_{ m ei}$
	nel sistema di coordinate locali,
F _{Xta(ei)}	Componente in direzione X della Forza, $F_{ta\alpha(ei)}$, nel sistema riferimento
	globale della macchina,
$\mathbf{F}_{Zta(ei)}$	Componente in direzione Z della Forza, $F_{ta\alpha(ei)}$, nel sistema riferimento
	globale della macchina,

F _{tn}	Forza di azione normale, nel sistema di coordinate locali del rotore,					
F _{tan(ei)}	Forza di azione media normale elica iesima, nel sistema di coordinate locali,					
$F_{tnx(ei)}$	Componente in direzione x della Forza $F_{\rm tan(ei)}$, nel sistema di coordinate locali,					
F _{tnz(ei)}	Componente in direzione z della Forza $F_{\rm tan(ei)}$, nel sistema di coordinate locali,					
F _{a(ei)}	Forza di azione iesima dovuta all'attrito, nel sistema di coordinate locali del					
	rotore,					
ΔF^*_{Xtaeij}	Differenziale tra le componenti delle forze di azione risultanti sulla prima e					
	sulla seconda elica, in direzione (${\rm X}$) nel sistema di coordinate globali della macchina,					
$\Delta \mathrm{F}^*$ Ztaeij	Differenziale tra le componenti delle forze di azione risultanti sulla prima e					
	sulla seconda elica, in direzione (${\sf Z}$) nel sistema di coordinate globali della macchina,					
\mathbf{p}_{att}	Potenza meccanica dissipata per attrito,					
L _{a(eiej)}	Lavoro meccanico dissipato per attrito,					
$ ho_{ m ei}$	Coefficiente di ripartizione delle azioni tra le eliche,					
c ₁	Coefficiente di variazione ampiezza di $F_{tam(ei)}$					
	$0 \le c_1 \le 1$ $0 \le F_{tam(ei)} \le 2$					
$lpha_{ m Rdx}$	Angolo direzione azioni su camera e reazioni su cuscinetti a carico del rotore					
	destro, nel sistema di coordinate globali della macchina,					
$\alpha_{ m Rsx}$	Angolo direzione azioni su camera e reazioni su cuscinetti a carico del rotore					
	sinistro, nel sistema di coordinate globali della macchina,					

Con riferimento alla figura Fig.01, si ha:

Dati

 $\beta = 15^{\circ}$

a = 29mm

b = 30.5mm $R_1 = 124.5mm$

Equazioni

$$\beta_1 = \operatorname{arctg} \frac{b}{a}$$
 $R_3 = \frac{a}{\operatorname{Cos}(\beta_1)}$

$$\theta = \arcsin\left[\frac{R_3}{R_1}\sin(\beta + \beta_1)\right]$$

$$\vartheta_1 = \frac{\pi}{2} - \beta - \vartheta - \alpha_a \qquad \beta_2 = \pi - (\beta + \beta_1) - \vartheta \qquad R_2 = R_3 \frac{Sin(\beta_2)}{Sin(\vartheta)}$$

$$\mathbf{b}_{ta} = \mathbf{R}_2 \operatorname{Cos}(\boldsymbol{\vartheta}_1 + \boldsymbol{\beta})$$
 $\boldsymbol{b}_{tn} = R_2 \operatorname{Sin}(\boldsymbol{\vartheta})$

$$\omega_a = \frac{2 \times \pi \times n_a}{60} \qquad \qquad M_{tra} = 1000 \frac{P}{2 \times \omega_a}$$

 $P_m = 1850 Kw$ $n_m = 1000 g / 1'$ $\tau_r = 3.3437$

$$n_{ar} = \frac{n_m}{\tau_r} = 299.07 g/l'$$

Per il calcolo dei valori di riferimento, si è creato un modello di calcolo parametrico, utilizzando Excel (vedi Allegato A).

Mediante questo modello è possibile simulare il funzionamento del miscelatore e quindi ottenere le caratteristiche di carico dei rotori, le azioni a carico della camera di miscelazione e le reazioni a carico dei cuscinetti.

8) CONDIZIONI DI CARICO

8.1) Per le analisi previste al punto 7.1 e 7.3, di seguito nella figura Fig.006 è rappresentata la disposizione dei cuscinetti sulla spalla lato acqua, mentre nella tabella Tab.001 si riportano i diagrammi delle Time Curve delle reazioni vincolari R_{AX(Rdx)}, R_{AZ(Rdx)}, R_{BX(Rdx)} e R_{BZ(Rdx)}, applicate ai Cuscinetti A e B del rotore destro e Sinistro:

<u>Fig. 006</u>

Disposizione Cuscinetti su Spalla lato acqua

<u>Tab. 001</u>

9.2) Con riferimento alle ipotesi definite nel paragrafo 7.2.2, di seguito, nella tabella Tab.003, si riportano i valori di stress e deformate massimi ottenuti dall'analisi statica degli effetti termici a carico della struttura:

<u> Tab. 003</u>

Tabella valori massimi di stress e deformate da analisi statica degli effetti termici								
sulla struttura del basamento attualmente in uso								
Step.	Time	Stress(max)	Ux(min)	Ux(max)	Uy(min)	Uy(max)	Uz(min)	Uz(max)
n°	S	Мра	mm	mm	mm	mm	mm	mm
-	-	138	-0,30	0,30	-0,26	0,15	-0,16	0,30

<u>Fig. 013</u>

Dettaglio distribuzione Stress da carico termico

<u>Fig. 014</u>

Dettaglio distribuzione Stress da carico termico

<u>Fig. 017</u>

Dettaglio distribuzione Stress da carico statico Equivalente allo step nº 2 dell'analisi dinamica

<u>Fig. 037</u>

Diagramma Polare reazioni vincolari cuscinetto A rotore Destro

Diagramma Polare reazioni vincolari cuscinetto B rotore Destro