Analisi testate dei cilindri Ø500 e Ø740mm

Committente:

SIAD Macchine Impianti S.p.A. Via Canovine, 2/4 - 24126 Bergamo, ITALIA

RELAZIONE DI CALCOLO

1	31-07-2013	Revised	Angelo Poletti	Marco Savi	Eugenio Cortiana
0	30-07-2013	First issue	Angelo Poletti	Marco Savi	Eugenio Cortiana
Rev.	Date	Issue Description	Prepared by	Verified by	Approved by

<u>Sommario</u>

Sommario

1)	Descrizione e Scopo	6
2)	Riferimenti Bibliografici	7
3)	Unità di Misura	7
4)	Materiali	7
5)	Modellazione FEM: applicazione dei carichi	8
6)	Modellazione FEM: vincoli e condizioni al contorno	13
7)	Modellazione FEM: mesh impiegata	14
8)	Modellazione FEM: risultati modello HPX-500-CP	17
8.1)	Condizione di carico: precarico delle connessioni filettate	
8.2)	Condizione di carico: precarico delle connessioni filettate e pressione dei fluidi	22
8.3)	Osservazioni	24
9)	Modellazione FEM: risultati modello HPX-740-CP	26
9.1)	Condizione di carico: precarico delle connessioni filettate	27
9.2)	Condizione di carico: precarico delle connessioni filettate e pressione dei fluidi	
9.3)	Osservazioni	33
10)	Analisi analitica della testata	34
11)	Modellazione FEM: analisi modello HPX-500-CP senza contatti	35
11.1) Condizione di carico: precarico delle connessioni filettate	39
11.1) Condizione di carico: precarico delle connessioni filettate e pressione dei fluidi	43
11.2) Osservazioni	47
12)	Conclusioni	48

Elenco Figure

Fig. 1: rappresentazione tensioni con il solo precarico tiranti M27 (HPX-500-CP)	9
Fig. 2: Applicazione dei precarichi sulla camera del cilindro HPX-500-CP (62.5kN/vite)	9
Fig. 3: Applicazione dei precarichi per piastra di chiusura del cilindro HPX-740-CP (125kN totale)	10
Fig. 4: Applicazione dei precarichi per piastra di chiusura del cilindro HPX-500-CP (125kN totale)	10
Fig. 5: Superfici di applicazione della pressione del gas su HPX-500-CP (20bar)	11
Fig. 6: Superfici di applicazione della pressione del gas su HPX-740-CP (5bar)	11
Fig. 7: Superfici di applicazione della pressione H ₂ O raffreddamento su HPX-500-CP (10bar)	12

Pagina 2 di 53

Fig. 8: Superfici di applicazione della pressione H $_2$ O raffreddamento su HPX-740-CP (10bar)	12
Fig. 9: Vincoli di posizione su faccia piana per i cilindri HPX-500-CP e HPX-740-CP	13
Fig. 10: Vincoli di simmetria per i cilindri HPX-500-CP e HPX-740-CP	14
Fig. 11: Dettagli Mesh HPX-500-CP	15
Fig. 12: Meshatura del modello HPX-500-CP	15
Fig. 13: Particolare affinamento Mesh HPX-500-CP	15
Fig. 14: Dettagli Mesh HPX-740-CP	16
Fig. 15: Meshatura del modello HPX-740-CP	17
Fig. 16: Particolare affinamento Mesh HPX-740-CP	17
Fig. 17: Aree del raccordo A e della sede dell'o-ring	17
Fig. 18: Aree della zona d'appoggio della valvola centrale	
Fig. 19: Andamento delle tensioni nel HPX-500-CP	
Fig. 20: Andamento delle tensioni nel HPX-500-CP. Particolare Raccordo A e sede o-ring	19
Fig. 21: Andamento delle tensioni nel HPX-500-CP. Particolare appoggio valvola centrale	20
Fig. 22: Sezione isotensoriale (200-250MPa) del Raccordo A e sede dell'o-ring	21
Fig. 23: Sezione isotensoriale (200-250MPa) della sede d'appoggio della valvola centrale	21
Fig. 24: Andamento delle tensioni nel HPX-500-CP	22
Fig. 25: Andamento delle tensioni nel HPX-500-CP. Particolare Raccordo A e sede o-ring	22
Fig. 26: Andamento delle tensioni nel HPX-500-CP. Particolare appoggio valvola centrale	23
Fig. 27: Sezione isotensoriale (200-250MPa) del Raccordo A e sede dell'o-ring	24
Fig. 28: Sezione isotensoriale (200-250MPa) della sede d'appoggio della valvola centrale	24
Fig. 29: Aree del Raccordo A e della sede dell'o-ring	26
Fig. 30: Aree della zona d'appoggio della valvola centrale	26
Fig. 31: Andamento delle tensioni nel HPX-740-CP	27
Fig. 32: Andamento delle tensioni nel HPX-740-CP. Particolare Raccordo A e sede o-ring	27
Fig. 33: Andamento delle tensioni nel HPX-500-CP. Particolare appoggio valvola centrale	28
Fig. 34: Sezione isotensoriale (200-250MPa) del Raccordo A e sede dell'o-ring	29
Fig. 35: Sezione isotensoriale (200-250MPa) della sede d'appoggio della valvola centrale	29
Fig. 36: Andamento delle tensioni nel HPX-500-CP	30
Fig. 37: Andamento delle tensioni nel HPX-500-CP. Particolare Raccordo A e sede o-ring	30
Fig. 38: Andamento delle tensioni nel HPX-500-CP. Particolare appoggio valvola centrale	31
Fig. 39: Sezione isotensoriale (200-250MPa) del Raccordo A e sede dell'o-ring	32
Fig. 40: Sezione isotensoriale (200-250MPa) della sede d'appoggio della valvola centrale	32
Fig. 41: Applicazione vincoli di assialsimmetria testata cilindro HPX-500-CP	35
Fig. 42: Applicazione vincolo di posizione testata cilindro HPX-500-CP	35
Fig. 43: Applicazione dei precarichi testata cilindro HPX-500-CP (155kN/tirante)	36
Fig. 44: Carichi dovuti alla piastra di fissaggio valvola centrale HPX-500-CP (125kN totale)	36

Fig. 45: Pressione dei gas sulla testata (20 bar(g))	37
Fig. 46: Pressione H ₂ O raffreddamento sulla testata (10 bar(g))	37
Fig. 47: Mesh della testata	
Fig. 48: Particolari mesh Raccordo A, sede o-ring e rilievo d'appoggio	38
Fig. 49: Particolari mesh Raccordo A, sede o-ring e rilievo d'appoggio	38
Fig. 50: Andamento tensioni con solo precarico lato A (HPX-500-CP)	39
Fig. 51: Andamento tensioni con solo precarico lato B(HPX-500-CP)	39
Fig. 52: Dettaglio tensioni con solo precarico Raccordo A e sede o-ring (HPX-500-CP)	40
Fig. 53: Dettaglio tensioni con solo precarico rilievo d'appoggio (HPX-500-CP)	41
Fig. 54: Sezione isotensoriale (200-250MPa) del Raccordo A e sede dell'o-ring	41
Fig. 55: Sezione isotensoriale (200-250MPa) della sede d'appoggio della valvola centrale	42
Fig. 56: Andamento tensioni a regime lato A (HPX-500-CP)	43
Fig. 57: Andamento tensioni a regime lato B(HPX-500-CP)	43
Fig. 58: Dettaglio tensioni a regime Raccordo A e sede o-ring (HPX-500-CP)	44
Fig. 59: Dettaglio tensioni a regime rilievo d'appoggio (HPX-500-CP)	45
Fig. 60: Sezione isotensoriale (200-250MPa) del Raccordo A e sede dell'o-ring	45
Fig. 61: Sezione isotensoriale (200-250MPa) della sede d'appoggio della valvola centrale	46

Elenco Tabelle

Tab 1: Caratteristiche meccaniche Ghisa GS 400-15	8
Tab 2: Caratteristiche meccaniche tiranteria in A 193 B7	8
Tab 3: Riepilogo carichi applicati negli studi FEM	13
Tab 4: valori tensioni superficiali nel Raccordo A	19
Tab 5: valori tensioni superficiali nella sede o-ring	19
Tab 6: valori tensioni superficiali nel rilievo d'appoggio della valvola	20
Tab 7: valori tensioni superficiali nel Raccordo A	23
Tab 8: valori tensioni superficiali nella sede o-ring	23
Tab 9: valori tensioni superficiali nel rilievo d'appoggio della valvola	24
Tab 10: valori tensioni superficiali nel Raccordo A	28
Tab 11: valori tensioni superficiali nella sede o-ring	28
Tab 12: valori tensioni superficiali nel bordo interno del rilievo d'appoggio della valvola	28
Tab 13: valori tensioni superficiali nel Raccordo A	31
Tab 14: valori tensioni superficiali nella sede o-ring	31
Tab 15: valori tensioni superficiali nel bordo interno del rilievo d'appoggio della valvola	32
Tab 16: valori tensioni superficiali nel Raccordo A	40
Tab 17: valori tensioni superficiali nella sede o-ring	40
Tab 18: valori tensioni superficiali nel bordo interno del rilievo d'appoggio della valvola	41
Tab 19: valori tensioni superficiali nel Raccordo A	44
Tab 20: valori tensioni superficiali nella sede o-ring	44
Tab 21: valori tensioni superficiali nel bordo interno del rilievo d'appoggio della valvola	45

<u>Allegati</u>

Allegato (A)	Foglio di calcolo per HPX-500-CP	51
Allegato (B)	Foglio di calcolo per HPX-740-CP	53

Via C.Battisti 30/C 24025 Gazzaniga (BG) C.F. E P.IVA 02749340168 Tel. +39-035-710576 Fax. +39-035-713226 www.progitech.it E-mail:info@progitech.it

Fig. 1: rappresentazione tensioni con il solo precarico tiranti M27 (HPX-500-CP)

Le altre connessioni filettate inserite nel modello sono state inserite modellando come carichi applicati ai corpi le forze che ne vengono generate. In particolare sono stati inseriti i precarichi delle valvole IN/OUT sui lati del cilindro come forze pari a 62.5kN per ogni vite M20. Inoltre sono stati inseriti i precarichi legati alla piastra di chiusura della testata; tale piastra di chiusura non è stata rappresentata nel modello, e tali precarichi sono stati stimati pari alle forze massime scambiate fra il corpo valvola centrale e la piastra di chiusura. Il carico complessivo di tali tiranti sia per la testata HPX-500-CP che per HPX-740-CP è stato scelto pari a 125kN.

Oltre alle forze scambiate dalle viti sulle sedi filettate, sono state inserite le reazioni dovute a questi precarichi, come pressioni agenti sui rilievi di appoggio delle valvole interessate dalla connessione.

Fig. 2: Applicazione dei precarichi sulla camera del cilindro HPX-500-CP (62.5kN/vite)

Via C.Battisti 30/C 24025 Gazzaniga (BG) C.F. E P.IVA 02749340168 Tel. +39-035-710576 Fax. +39-035-713226 www.progitech.it E-mail:info@progitech.it

Fig. 11: Dettagli Mesh HPX-500-CP

Fig. 12: Meshatura del modello HPX-500-CP

Fig. 13: Particolare affinamento Mesh HPX-500-CP

Mesh Dettagli	9)
Nome studio	Copia di [PRE_HiMesh] (-Default-)
Tipo di mesh	Mesh di elementi solidi
Mesher usato	Mesh standard
Transizione automatica	Disattivo
Includi loop automatico della mesh	Disattivo
Punti Jacobiani	4 punti
Controllo mesh	definito
Dimensione dell'elemento	20 mm
Tolleranza	0.225 mm
Qualità mesh	ottima
Nodi totali	3007771
Elementi totali	2114946
Rapporto di aspetto massimo	66.472
Percentuale degli elementi con rapporto di aspetto < 3	98.8
Percentuale degli elementi con rapporto di aspetto > 10	0.0651
Percentuale di elementi distorti (jacobiano)	0
Mesh non congruente nelle parti fallite in precedenza	Disattivo
Tempo per completare la mesh(hh:mm:ss)	00:05:57
Nome del computer	17-3960X

Fig. 14: Dettagli Mesh HPX-740-CP

Pagina 16 di 53

Fig. 15: Meshatura del modello HPX-740-CP

Fig. 16: Particolare affinamento Mesh HPX-740-CP

Come si vede dalle immagini precedenti, oltre ad una mesh generale per tutti i corpi presenti, si è proceduto ad affinare le dimensioni degli elementi tetraedrici nelle zone di maggior sollecitazione al fine di ottenere risultati più aderenti al comportamento reale degli oggetti.

8) Modellazione FEM: risultati modello HPX-500-CP

Nelle figure seguenti sono rappresentati i valori tensoriali nel modello HPX-500-CP.

Fig. 17: Aree del raccordo A e della sede dell'o-ring

Pagina 17 di 53

Fig. 18: Aree della zona d'appoggio della valvola centrale

8.1) <u>Condizione di carico: precarico delle connessioni filettate</u>

Nel seguito sono riportati i risultati delle analisi relative alle sole condizioni di precarico delle tiranterie, escludendo quindi il contributo portato dai carichi di pressione.

Fig. 19: Andamento delle tensioni nel HPX-500-CP

Fig. 20: Andamento delle tensioni nel HPX-500-CP. Particolare Raccordo A e sede o-ring

	Valore	
Somma	2.1882e+00	N/mm^2 (MF
Media	100.15	N/mm^2 (MF
Max	157.67	N/mm^2 (MF
Min	57.392	N/mm^2 (MF
RMS	102.94	N/mm^2 (MF

Tab 4: valori tensioni superficiali nel Raccordo A

	Valore	
Somma	1.0652e+00	N/mm^2 (MF
Media	191.9	N/mm^2 (MF
Max	357.34	N/mm^2 (MF
Min	95.09	N/mm^2 (MF
RMS	200.95	N/mm^2 (MF

Tab 5: valori tensioni superficiali nella sede o-ring

Dalle immagini qui presentate, si può vedere che le zone sollecitate in modo interessante sono solo relative al Raccordo A, alla sede dell'o-ring ed al profilo d'appoggio della valvola centrale (aree descritte nelle Fig. 17: Aree del raccordo A e della sede dell'o-ring e Fig. 18: Aree della zona d'appoggio della valvola centrale). In particolare sia dalle immagini descrittive delle tensioni che dalle tabelle riepilogative delle tensioni si può notare come il Raccordo A sia sollecitato in modo relativamente blando (100 MPa valore medio), mentre la sede dell' o-ring presenti valori più alti (192 MPa). Il rilievo d'appoggio della valvola centrale non sembra presentare particolari problemi restando anch'esso a valori di tensione piuttosto ridotti (135 MPa).

Fig. 21: Andamento delle tensioni nel HPX-500-CP. Particolare appoggio valvola centrale

	Valore	
Somma	87354	N/mm^2 (MF
Media	134.6	N/mm^2 (MF
Max	270.46	N/mm^2 (MF
Min	86.938	N/mm^2 (MF
RMS	142,63	N/mm^2 (MF

Tab 6: valori tensioni superficiali nel rilievo d'appoggio della valvola

Le sezioni isotensoriali descrivono più nello specifico le zone suddette. Dalle Fig. 22 e Fig. 23 risulta evidente come i livelli di tensioni massimi restino al di sotto del valore di snervamento del materiale.